
Pergamon 

1~. .I. Hear Mass Transfer. Vol. 31, No. 4, Pp. 647-657, 1994 
Elsetier Saence Ltd 

Printed in Great Britain. All riehts reserved 

Analytic formulae for the effective conductivity of 
a square or hexagonal array of parallel tubes 

R. D. MANTEUFEL 

Southwest Research Institute, 6220 Culebra Rd., San Antonio, TX 78238-5166, U.S.A. 

and 

N. E. TODREAS 
Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, U.S.A. 

(Received 5 January 1993 and infinal form 27 July 1993) 

Abstract-A set of analytic formulae are presented for the effective thermal conductivity of either a square 
or a hexagonal array of parallel tubes which have distinct core, tube and fill conductivities. The formulae 
are based on a generalization of Rayleigh’s [Phil. Mug. 34(S), 481-502 (1892)] method to include hexagonal 
(as well as square) arrays, tubes (as well as solid rods), and higher-order terms in the analytic series. The 
accuracy of the analytic formulae is determined by comparison with essentially exact numerical calculations. 

The formulae are applied to the problem of an array of dry, spent, nuclear fuel rods. 

INTRODUCTION 

THE PURPOSE of this paper is to present and numeri- 
cally validate a set of analytic formulae for the effec- 
tive thermal conductivity, kefl, of either a square or 

hexagonal array of tubes, see Figs. 1 and 2, respec- 
tively. Each tube consists of a core and tube wall with 
conductivities k,,,, and ktube. When the core and wall 
are the same material, then the tube is a solid rod, 
k rod. The region between the tubes is filled with a 
third material, kc,,. The arrays are assumed infinite so 
boundaries are not considered. The effective con- 
ductivity of interest is perpendicular to the array of 
tubes which appear as circles in a two-dimensional 
sketch. The effective conductivity is the conductivity 
value for which a homogeneous medium will exhibit 
the same heat transfer characteristics (i.e. the same 
heat flux for equal temperature gradients). 

The set of analytic formulae extend and improve the 
range of available analytical solutions for the effective 
conductivity of a regular array of tubes. It is con- 
sidered theoretically important to have this type of 
analytical solution for such a well defined class of 
problems. For example, the equations offer analytic 
solutions which can be used to benchmark computer 
codes (although properly implemented numerical 
solutions can be more accurate than the analytic for- 
mulae, especially as the accuracy of the numerical 
technique is increased). The analytic formulae also 
have the significant advantage of being easy to use 
because they do not re’quire a computer program. 

A motivation for this work stems from the need to 
calculate the k,, for a dry spent nuclear fuel assembly 
which consists of fuel rods in a regular pattern (either 
square or hexagonal array). During transportation 

and dry storage, the fuel assemblies are placed in an 
air-tight container which has an essentially stagnant 

fill gas. The fuel rods consist of a center core (fuel) 
and a tube wall (clad) as illustrated in either Fig. 1 or 

2. Spent fuel rods have a fuel-to-clad gap thermal 
resistance which is discussed later in this paper. 

(a) (b) 

FIG. 1. Square array of tubes with computational domains 
used to calculate the conduction factor, Fcond, in the 

(a) horizontal and (b) 45 degree direction. 
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NOMENCLATURE 

(7, h, d, D, r coethcients in formulae 
(no names) 

.f rod (or tube) volume fraction 

.I,,, maximum volume fraction 

(rods touching) 

FC‘W,i ~ondu~tioi~ factor. k,,,ik,iii 
WX hexagonal array 

k,,,,, core conductivity (for tube only) 

ir,l, effective conductivity 

h 1111 fill conductivity 

II-,.,,,, rod conductivity (for solid rod only) 

~~~~~~~ tube wall conductivity (for tube only) 

t;, outer tube radius 

I.8 inner tube (outer core) radius 

SQ square array 

1 tube wall thickness, r. - ri. 

_. 
‘i 

BACKGROUND LITERATUR-E 

The problem of heat conduction perpendicular to 
an array of tubes has many mathematical analogies 

to phenomena in materials [l-3], optics [4-71, biology 
[8], electrical conductivity [9-l 11, vibration [9] and 
mathematics [12-l 51. A complete presentation of the 
mathematical analogies is beyond the scope of this 
paper, hence this paper concentrates on the effective 

thermal conductivity. 

material by lsraelachvili of ul. 14, 57 and by Ninham 

and Sammut [S] ; and extended to hexagonal arrays 
by Perrins et ul. [7]. This paper combines and extends 
the earlier results, with emphasis on tubes (as well as 
solid rods), within hexagonal (as well as square) 
arrays, and increases the number of terms retained 
in the analytic series. 

There have been many articles published on the 
effective conductivity of a regular array of tubes or 
solid rods. Only the most important background 
articles will be discussed in this work. The basic 
method for solid rods is outlined by Rayleigh [9]; 
extended to tubes having the same core material 
as the fill material by Runge [lo] ; generalized by 
Keller’s reciprocal theorem [I 1, 121; extended to 
tubes having a core material different from the fill 

(4 W 
Fro. 2. Hexagonal array of tubes with computational 
domains used to calculate the conduction factor, Fcund, in the 

(a) horizontal and (b) 30 degree direction. 

Lord Rayleigh [9] published a seminal article where 
he considered the electrical conductivity, refractive 
index and relative density of a composite medium 
consisting of either solid rods in a square array or 
solid spheres in a cubic array. Rayleigh’s original 
theoretical approach continues to be useful and has 
not been outdated or replaced (although alternative 
methods have been developed for tightly-packed, 
highly-conductive cylinders [I 51). Because of its length 
and mathematical compIexity, Rayleigh’s method is 
summarized in Appendix A, as it has been used to 

derive the expanded set of analytic formulae presented 
in this paper. 

Runge [lo] was the first to extend Rayleigh’s 
method to the problem of tubes where the core of the 
tube was filled with the same material as the fill med- 
ium (k,,, = k,,,). Although Runge states that the new 
formulae are valid only for thin tubes, we found the 
equations to be accurate for all tube wall thicknesses. 

Keller [I 1, 121 presented the reciprocal theorem 
which is applied here to state that the conduction 

factor, FCond = (kcfr/kA,,), for a given volume fraction, 
f’(=volume fraction occupied by solid rod (or core 
plus tube)), and rod-to-fill conductivity ratio, EC,,d/kfili. 

is equal to the reciprocal of FClllld based on the same 
f and reciprocal ~~~,~~~ti,,. 

in this paper, Keller’s reciprocal theorem is used to 
confirm the numerical calculations. 

Israelachvili et al. [4, 51 and Ninham and Sammut 
[8] present formulae for arrays of tubes with three 
distinct material conductivities (li,,,,, ktube and k,,,). 
Although brief, the paper by Israelachvili et ot. [4] 
does reveal considerable investigation to include the 
effects of tubes with different core. wall and fill con- 
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ductivities. It should also be noted that two typo- 
graphical errors were found in the paper by Ninham 
and Sammut [8]. In their equation (5), the number 
0.133 should be 0.0133615 and in their equation (83), 
the exponent on d” should be a*‘. Israelachvili is 
acknowledged by Ninham and Sammut [8] as con- 
tributing important comments to their paper where it 
appears that Israelachvili highlighted his earlier work 
to extend Rayleigh’s and Runge’s equations from 
solid rods to tubes. Both groups, however, only con- 
sidered a square array. 

Perrins et al. [6, 71 present an extension of Ray- 
leigh’s method to a hexagonal array of solid rods. 
Perrins et al. [6] noted that Rayleigh omitted a term 
in an equation for the square array of solid rods (in 
Table 1 of this paper, the term bs_,f8~3~g was missing 
from the 4th & 5th order solution for the square 
array in Rayleigh’s paper). Perrins et al. conclude that 
Rayleigh used a ‘triangular truncation’ of the terms 
in the analytic expansion. However, Rayleigh’s equa- 
tion is actually based on a ‘linear truncation’. This 
difference was not considered significant by Perrins et 
al., nor is it here (although our equations do include 
this term). A slight typographical error was also found 
in Perrins et d’s [6] work : in their Appendix 1, equa- 
tion (Al .5) the SC, S,*, &, . . sums are shown to 
have negative values, however all of the S sums are 
positive values. Their final equations and calculations 
do agree with our work. Perrins et al. only consider 
solid rods, however, and the work was not generalized 
to include tubes. 

ANALYSIS 

The results of this work are presented in dimen- 
sionless form for greater generality. The primary 
quantity to be calculated is the conduction factor, 
F cond, which is defined as : 

k 
F ketf. cond =- 

fill 

The term ‘effective conductivity’ is used in this work 
where ‘conduction factor’ is more exact. For example, 
the analytic formulae are written in terms of FCOnd and 
not keK. However, formulae for the ‘effective con- 
ductivity’ are more easily understood so that term is 
used freely here. 

Five dimensionless parameters are used to express 
the conduction factor as a function of(i) array pattern 
(i.e. either square, SQ or hexagonal, KY), (ii) volume 
ffaction, (iii) core-to-fill conductivity ratio, (iv) tube- 
to-fill conductivity ratio, and (v) inner-to-outer radius 
ratio. In summary, the functionality for an array of 
tubes is : 

F cond = Fcond (3) 

and for an array of solid rods is : 

F Fcond cand = (SQ or Hx},f, 2). (4) 

Numerical calculations 
The analytical formulae are compared with the 

results of numerical calculations. The numerical cal- 
culations are described by Manteufel [16] and are 
summarized in Appendix B. A properly implemented 
numerical method can yield results which are more 
accurate than the analytic formulae because the for- 
mulae are based on a truncation of an infinite series. 
However, analytic formulae have advantages such as 
being easier to use than a method requiring a com- 
puter program. The numerical results were found to 
be essentially exact (to approximately 5 digits) and 
were used to check the accuracy of the analytic for- 
mulae. 

Analytic formulae 
The analytic formulae were derived using Ray- 

leigh’s method and are summarized in Table 1. For 
each array, four different truncation orders are 
reported, i.e. the {lst, 2nd & 3rd, 4th & 5th, 6th & 
7th} orders for the square array and the { 1st & 2nd, 
3rd & 4th & 5th, 6th & 7th & 8th, 9th & 10th & 1 lth} 
orders for the hexagonal array. The precise meaning 
of the integer grouping for the orders can be under- 
stood by following Rayleigh’s method which is dis- 
cussed in Appendix A. The higher order indicates 
more terms were retained in the infinite series. The 
most complex equations (6th & 7th order for the SQ 
array, and 9th & 10th & 11 th order for the HX array) 
have not been previously published. 

The lowest order formulae for the SQ (1st) and 
HX (1st & 2nd) arrays yield the same result (i.e. 
terms = 0 in Table 1) so that the Fcond is: 

F 
1 -_b, 

cond = l+fv,’ 

Equation (5) is a very simple formula and is con- 
sidered accurate for many applications. When the rod 
conductivity (or equivalently the core and tube con- 
ductivities) is near the fill conductivity, then equation 
(5) is accurate. As the conductivity ratios increase, 
then the error increases. 

For the special case of solid rods (k,,,, = k,+), 
the parameter dtUbe_core = 0, so that the formula for v, 
reduces to (from Table 1) : 

km - krod 
0, = &ill-rod = ___ 

km + hod ’ (6) 

In this case, all of the v’s are equal (i.e. v, = v) = 
vj = . .). Equation (6) is consistent with the solid 
rod equations published by Rayleigh [9] and Per&s 
et al. [6, 71. 

Another special case is for tubes having the 
same core and fill material (k,,,, = k,,,), so that 
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Table 1. Summary of analytic formulae for the effective conductivity of a square or hexagonal array of tubes 

SQ = square array IfA’ = hexagonal array 

Volume fraction : Volume fraction : 

constants : 

u4 = 0.305828 
n, = 0.0133615 

a,, = 0.000184643 
c,,<> = 0.242252 
uZ,) = 0.0341942 
LzZR = 0.0479731 

h,~, = 1.40296 
h,?.) = 2.55915 
h,,.> = 0. I5233 
h>,,., = 3.59039 
hZ4_, = 0.389837 
h 24 I = 6.54926 
/I,?~, = 9.18835 
h,,, = 0.997652 

constants : 

t16 = 0.0754222 h ,?, = 1.06028 
i,,? = 0.000076500 h,,, =- 0.73210 
U,8 = 0.0000000517088 b,,~? = 0.0447964 
nl, = 0.00423258 h,,,., = 0.776234 
o?,~ = 0.000056OOS3 h,,, = 0.0327954 
a4: = 0.00005938 15 /& = 0.535971 

h 4x , = 0.56828 I 

the 4,be-Lore = - 411-luhe, and the formula for c,, Dirrctional Fcond 

reduces to (from Table 1) : In general, the conductivity of a heterogeneous 

&ll-tuhe (I - (::,‘“> 

medium can be expressed using a symmetric second- 
order tensor. For a square or hexagonal array. the 
second order tensor is rotationally invariant because 

ClI =-mPm- ~ -~ 

( 

Zn 

1 - (4ill.td 2 
0) 

(7) 

;; 
each is physically symmetric for either 90 (square) 
or 60 (hexagonal) degree rotations. Therefore, the 
effective conductivity is isotropic and can be expressed 

which is consistent with the results of Runge [lo]. as purely a scalar quantity (i.e. proportional to the 
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a 
b 

0 

d 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

FIG. 3. Conduction factor calculated for solid rods in a 
square array for a range of rod-to-fill conductivity ratio, 
krodlkfill = {1000(a), 100(b), 10(c), 5(d), 2(e), l(f), 1/2(g), 

l/S(h), l/IO(i), 1/100(j), 1/1000(k)}. 

identity tensor) (see also refs. [6, 91). This property 
was used to verify the numerical implementation by 
calculating Fcand in each direction (see Figs. 1 and 2). 
The results verified a correct implementation of the 
numerics. 

Keller’s reciprocal theorem 
The accuracy of the numerical calculations was 

confirmed by comparison with Keller’s reciprocal 
theorem [12] (see equation (l)), and the results are 
presented in Fig. 3. In Fig. 3, Fcond is numer- 
ically calculated for eleven values of krod/kfi,, for 
rods in a square array. The error was defined as: 

Error = 1 -Fcand(f, kodlkfill) Fcond(L kfilllkod) and 
was found to be between 1O-3 and lo-’ over the range 
of f/fm,, for 10e3 < krod/kfrll ,< 1000. This agreement 
confirms a correct implementation of the numerical 
algorithms. 

Calculations for solid rods 
The analytic formulae and numerical calculations 

for solid rods are compared in Figs. 4 and 5, for six 
values of krod/kfi,,. The numerical calculations of Fcond 
are plotted as solid lines and are the same for the four 
plots. The analytic formulae are plotted as dashed 
lines where the order of the formulae is different for 
each plot. 

The numerical calculations are considered accurate 
and essentially ‘exact’ to approximately 5 digits of 
accuracy of Fcond. It is noted that the analytic formulae 

Square Array, Solid Rod, 1 st Order 

‘02- 

Square Amy, Solii Rod. 2nd & 3rd Order 

I 

‘“0.0 0.2 0.4 0.6 0.8 1.0 ‘“0.0 0.2 0.4 0.6 0.8 1.0 

f/f- f/f, 

Square Array, Solid Rod, 4th 8 5th Order square Array, SC-Iii Rod. 6th 8 7m Order 

‘“0.0 0.2 0.4 0.6 0.8 1.0 .-0.0 0.2 0.4 0.6 0.8 1.0 

flfmax fffmax 
FIG. 4. Comparison of numerically calculated conduction factors (solid lines) with the analytic formulae 
(dashed lines) for a square array of solid rods for different rod-to-fill conductivity ratio, krod/ks,, = {2(a), 

5(b), 10(c), 20(d), SO(e), 10000(f)}. The percent error contours {0.01%(g), 0.1%(h), 1.0%(i), 10.0%(j)} 
are shown in the upper-left sub-plots. 
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102 
Hexagonal Array. Solid Rod, 1 st & 2nd Order 

100 
0.0 0.2 0.4 0.6 0.6 i .a 

flfmax 

-Hexagonal Array, Solid Rod, 6th 7th & 6th Order 

El01 
u? 

100 
0.0 0.2 0.4 0.6 0.8 1.0 

f I fmax 

102 
Hexagonal Array, Solid Rod, 3rd, 4th 8 5th Order 

f 

a 

100 
0.0 0.2 0.4 0.6 0.8 1.0 

fffrllax 
Hexagonal Array, Solid Rod. 9th 10th & 11 th Order 

10” 

0 

ElO’ 
LL 

‘“0.0 0.2 0.4 0.6 a.8 1.0 

flfmax 

FIG. 5. Comparison of numerically calculated conduction factors (solid lines) with the analytic formulae 
(dashed lines) for a hexagonal array of solid rods for different rod-to-fill conductivity ratio, k,,,,,/kn,, = (2(a), 
5(b), IO(c), 20(d), 50(e), 10000(f)]. The percent error contours {0.01%(g), O.]%(h), 1.0%(i), 10.0%(j)) 

are shown in the upper-left sub-plots. 

consistently agree with the numerical calculations at 
low values off, and improve in accuracy as the order 
of the formula is increased. The analytic formulae 
increasingly underestimate the numerical calculations 
both as f increases and as k,,,/k,,, increases. When 
k,,Jk,,, is close to unity, the analytic formulae provide 
accurate predictions over the entire range of ,fi For 
example, when krod/kfill = 2, the numerical cal- 
culations (solid lines) and analytic formulae (dashed 
lines) are coincident, hence they appear as only a solid 
line. 

Error contours are shown as sub-plots in the upper- 
left corner of Figs. 4 and 5. From these error contours, 
one can identify where a given analytic formula is 
within 0.01, 0.1, I.0 and 10% of the exact solution 
(where the numerical calculations are assumed to 
be the exact solution). For example, one can read 
from Fig. 4(a) that the 1st order analytic formula is 
within 1% for isothermal rods (krod/kfill >> 1) up to 

,f/fmif = 0.54 (or equivalently ,f’= 0.420, because 
fnuX = 0.7854). Similarly, from Fig. S(b) the 2nd & 
3rd order analytic formula is within 1% for isothermal 
rods up to f/fmaX = 0.83 (,f= 0.653). As previously 
noted, isothermal rods represent the worst case for 
underestimating the solution, so that for finite con- 

ductivity rods or tubes, the analytic formulae are 
accurate up to greater values of J: 

For comparison purposes, the volume fractions at 
which the error is greater than 1% are reported in 
Tables 2 and 3 for each of the analytic formulae. 

Table 2. Volume fractions for the analytic (formula to be 
accurate within one percent (I %) for a square array of iso- 

thermal (i.e. infinite conductivity) solid rods 

Order 1st 2nd & 3rd 4th & 5th 6th & 7th 

f,?,.,, 0.537 0.831 0.905 0.941 
f 0.420 0.653 0.710 0.739 

Note: /,,, = 71/4 z 0.7854 for square array. 

Table 3. Volume fractions for the analytic formula to bc 
accurate within one percent (1%) for a hexagonal array ol 

isothermal (i.e. infinite conductivity) solid rods 

3rd, 4th 6th, 7th 9th. 10th 
Order 1st & 2nd & 5th & 8th & 11th 

!? 0.696 0.631 0.889 0.807 0.95 0.863 1 0.968 0.878 

Note : .I,.,, = n/(24,3) g 0.9069 for hexagonal array. 



As expected, the higher order formulae are accurate, 20 

however, they are more complex (see Table 1). Also, 18 

the percent improvement in accuracy decreases as 18 

each additional term is added. Hence the equation 14 

complexity greatly increases while the improvement E 
e 

12 
in accuracy only slightly improves. u 10 

It is noted that for many practical problems, k,,&,, 8 
will not be a large number and the simplest formula I 

6 
(equation (5)) is accurate for a significant range of J 4 h 

Calculations for tubes with k,,, = kfill 
The accuracy of the analytic formulae was checked 

for the special case of tubes whose cores contain the 
fill as noted in equation (7). The calculations were 
performed for both square and hexagonal arrays 
for varying tube wall-thickness-to-outer-radius ratio, 
t/rO. Only a small portion of the results (SQ array, 

9 
a 

0 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

flfmax 
20 
18 i 

18 
h 

14 
three values of t/r,) are presented in Fig. 6 as rep- -z 
resentative of the tube calculations. In Fig. 6, the 

8 12 
u 10 9 

formulae are plotted as solid lines and the numerical 8 
calculations as circles. The analytic formulae are con- f 

sistently accurate and improve in accuracy as t/r0 
6 
4 e 

decreases. d 
2 a 

Calculations for spent nuclear fuel 
0 
0.0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1.0 

The original motivation for this work was to cal- flfmax 
culate the keff for a dry spent nuclear fuel assembly. I 

An assembly is typically described as either a square 
h 

array (for boiling water or pressurized water reactor 
assemblies) or a hexagonal array (for consolidated g 

or liquid metal reactor assemblies). An assembly 
consists of fuel rods which have a center core (U02 f 

fuel) and cladding (tube wall, commonly zircaloy). 
During transportation and dry storage, the spent 

e 

fuel assemblies are placed in an air-tight container, d 

then vacuum pumped and backfilled with a non- C 

oxidizing gas such as helium (He) or nitrogen (N?). a 

The fill gas remains essentially stagnant. Numerical 0.0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1.0 
calculations were performed for the nominal case f/fmam 
of U02 fuel (kuO, = 5 W mm1 ‘Cl), zircaloy clad 

!&?? m 
= 15 W m-’ ‘Cl), either nitrogen (kNZ = 

FIG. 6. Comparison of numerically calculated conduction 

IO I C ) or helium (k Hc = 0.2 W m-’ “C-‘) 
factors (circles) with the 4th and 5th order analytic formulae 
(solid lines) for a square array of tubes krod/kfil, = for three 

fill, and in either a square or a hexagonal array. The tube wall thickness ratios, t/r, = {O.Ol, 0.1,0.2) for nine rod- 

length ratios are representative of a PWR assembly to-fill conductivity ratios, ktube/kfi,, = {I(a), 2(b), 5(c), 10(d), 

(from ref. [16] ; d = 0.95 cm, t = 0.056 cm). 
20(e), 50(f), 100(g), 200(h), 10000(i)). The percent error 

Between the U02 fuel and the tube cladding, there 
contours {0.01%(j), 0.1%(k), 1.0%(l), 10.0%(m)} are 

exists a gap which is filled primarily with gaseous 
shown in the upper-left sub-plots. 

fission products (e.g. xenon and krypton) and helium 
[17]. Hence, in the real spent fuel rod, a gap con- 
ductance (i.e. thermal contact resistance) exists gap resistance. However, this lower bound in not 

between the fuel and the clad, and varies with considered in this work. The analytic formulae and 

irradiation history. To include the effects of gap con- the numerical calculations are compared in Fig. 7 

ductance, we performed calculations for two cases: where calculations were performed for (1) square and 

(1) assuming infinite gap conductance (i.e. no contact hexagonal arrays ; (2) nitrogen and helium back fill 

resistance) and (2) assuming the core and the fill gas gas ; (3) assuming both infinite gap conductance and 
have the same conductivity (i.e. neglecting the higher k core = kc,,. This resulted in eight analytic and eight 
conductivity of the fuel). The second case is only for numerical curves for comparison. Higher order ana- 
illustration purposes and a lower bound on Fcand can lytic formula (4th & 5th order for the SQ array, 6th, 
be determined by considering both k,,, << kfi,, and 7th & 8th order for the HX array) were found to 

L, C-C kube which is equivalent to assuming infinite achieve excellent agreement with the numerical results 

The effective conductivity of an array of tubes 653 
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100 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 i 1 

I-__--___--i 
Volume Fraction 

FIG. 7. Comparison of numerically caicutated conduction 
factors (solid lines) with 4th & 5th order square array and 
6th, 7th & 8th order hexagonal array analytic formulae 
(dashed lines) for spent nuclear fuel rods in either nitrogen 
or helium gas assuming either (a) infinite gap conductance 

or (b) k<,,, = x-r,,,. 

at the higher volume fractions (see the dashed lines in 
Fig. 7). 

For comparison, a typical PWR assembly has a 
squat-e array and a rod pitch-to-diameter ratio of 
p/d = 1.33 which results in f’= 0.44. For this case the 
analytic formulae are considered accurate. A con- 
solidated assembly has a hexagonal array and a closer 
rod spacing (0.75 <fi 0.9), so that the higher-order 
analytic formulae arc required for accuracy. 

SUMMARY 

A set of analytic formulae for the effective con- 

ductivity of either a square or hexagonal array of 
parallel tubes has been developed and numerically 
validated. In summary : 

l The formulae are based on a generalization of 

Rayleigh’s [9] method to include hexagonal (as well 
as square) arrays, tubes (as well as solid rods), and 
higher-order terms in the analytic series. see Table 1. 
l The accuracy of the formulae was computed 

using essentially exact numerical calculations. 
o The analytic formulae increasingly underestimate 

FIL-,,,,d for increasing volume fraction and increasing 
rod-to-fill conductivity ratio, XC Figs. 4 and 5. 

. The accuracy of the formulae for the case of 

intiniteIy conducting (isothermaf) solid rods was cal- 

culated and tabulated, see Tables 2 and 3. 
m The analytic formulae were noted to be accurate 

for tubes (k,,,, = k,,,) as well as solid rods, see Fig. 6. 

o For the case of dry, spent, nuclear fuel rods, the 
4th & 5th order formula for the square array and the 
hth, 7th & 8th order formula for the hexagonal array 
are considered accurate. see Fig. 7. 
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APPENDIX A: ANALYTICAL FORMULAE 

The basic method is outlined by Rayleigh [9] and has 
been discussed by Perrins et al. [6, 71, among others. This 
discussion is presented to (i) provide new insights mto the 
derivation. hence complement previous discussions, and (ii) 
give the interested reader the flavor of the derivation of 
the analytic solution. For example, the generalization to 
tubes is more fully developed as weli as the distinctions 
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among linear, triangular and square truncations used in 
the development. 

The analysis begins by considering a quarter cylinder in a 
square box as shown in Fig. Al. The temperature solution 
in the fill and rod regions are assumed to be of the form : 

and 

Trod = f C,r”cos (n0). 
“S= 1.3.5,. 

642) 

The origins of these expansions do not appear obvious, how- 
ever, they are noted to satisfy the boundary conditions. In 
particular, the assumed temperature profiles satisfy the left 
(isothermal) boundary condition of: 

T r,O=g =O ( ) (A3) 

and the bottom (insulated) boundary condition of: 

g(r, fl = 0) = 0. (A4) 

The expansions are also required to satisfy the interface 
boundary conditions : 

Ts,,(r = r,, 0) = Trod@ = r,, 0) 645) 
and 

&,,%(r = r,,Q) = k,,F(r = r,,0). (.46) 

The insertion of equations (A.1) and (A.2) into equations 
(AS) and (A.6) leads to two equations with three sets of 
unknowns. The equations constrain two of the sets of vari- 
ables (A’s, B’s, or C’s) in terms of one of the sets of variables. 
For example, the A’s and C’s can be expressed as functions 
of the B’s : 

1 
A, = TB 

r(r,) ” 
(A7) 

and 

cn = (li+ly(r0)2nBn W) 

where 

&I, -k,,, 

v=kfill+ 
(A9) 

The solutions can then be expressed as functions of the 
unknown B’s : 

Tm = 

T= uniform T = uniform 

FIG. Al. Quarter cylinder considered in the derivation of the 
analytic formulae. 

Trod = f (Al 1) 
?I= ),X.5. 

The B’s are calculated using the method of Rayleigh which 
can be interpreted as enforcing the top (insulated) boundary 
condition and the right (isothermal) boundary condition. In 
addition, the values of the B’s depend on the type of array 
considered. Here for example, a square array is considered. A 
hexagonal array would have the same structure as equations 
(AlO) and (All), however the B’s would have different 
values. These two boundary conditions are only approxi- 
mately satisfied and the agreement improves with more terms 
in the series. Rayleigh’s method yields : 

fh- 1 
J”.l -v(T,)2n = 

f (n+m- ‘Ys B (A12) 

*=,,3,5,.. w-l)! “+m m 
where n is odd and ranges from 1, 3, 5, up to N, and 

6.1 = 
1 

1 n=l 

0 otherwise 

The parameter M in equation (A12) is determined from one 
of three options : 

Linear Truncation 

Triangular Truncation 

SquareTruncation 

The terms linear, triangular and square are used to indicate 
the shape of the set of equations generated on the right hand 
side of equations (A12) through the choice of M. The linear 
truncation indicates that only one term is on the right hand 
side for each equation after the first. The square truncation 
indicates that each equation (from first to last) has the same 
number of terms on the right hand side. The triangular 
truncation has decreasingly fewer terms on the right hand 
side for increasing N (i.e. the number of equations). The 
‘linear’ truncation was used by Rayleigh [9] and the ‘tri- 
angular’ truncation has been used by Perrins et al. [6, 71, 
among others. Similarly, the ‘square’ truncation has been 
discussed by Perrins et al. [6]. Equation (A12) generates a 
set of N equations in N unknowns which can be solved 
to yield the B’s, The S’s in equation (A12) are numerical 
coefficients which can be calculated from a summation of the 
form : 

Sk = f (x,+J(- l)Y,)-k (A13) 
,= I 

where (xi, y,) are the locations of all of the surrounding 
cylinder centers (excluding the cylinder at the origin). The 
values of the S’s have been calculated for the square array : 

S, = R = 3.1415926 

s, = 3.1512112 

s* = 4.2557732 

$2 = 3.9388490 

s,, = 4.0156950 

s20 = 3.9960967 

s*4 = 4.0009768 

&* = 3.9997559 

s,, = 4.0000610 

S36 = 3.9999847 

s, = 4.0000038 

s, = 3.9999990 

s.4, = 4.0000002 

& = 3.9999999 



656 R. D. MANTEUFEL and N. E. TODREAS 

and for the hexagonal array 

= 3.6275987 

5.8630317 

6.0096400 

5.9997184 

6.00001 I6 

5.9999996 

6.0000000 

The effective conductivity can be calculated using Green’s 
Theorem with the solutions for the temperature distri- 
butions. This yields : 

FC<,“d = I -27tB,. (A14) 

The procedure is to solve the equations generated by equa- 
tion (Al2) for B, and substitute the solution into equation 
(A14). The ‘order’ of the analytic series is determined by the 
choice of ‘N’ in equation (A12). In Table 1 of this paper, 
the analytic solutions were generated using the ‘triangular’ 
truncation scheme with N = 1,2.. .7 for the square array. 
and with N = 1,2,. . 1 I for the hexagonal array. The reader 
is reminded that for the square array the solutions are equal 
for sets of N (i.e. N = (2 or 3) generate the same solution. 
N = (4 or 5) generate the same solution, N = (6 or 7) 
generate the same solution). Similarly, for the hexagonal 
array the solutions are the same when N = (3 or 4 or 5), 
N = (6 or 7 or 8), and N = (9 or IO or 11). These group- 
ings of solutions are shown m Table I and throughout this 
paper. 

The generalization to tubes is considered straightforward 
where three temperature distributions are assumed as shown 
(compare with equations (Al) and (A2) : 

A,,? + ;A! cos (nU) i P.15) 

(‘416) 

and 

The edge boundary conditions remain the same (equations 
(A3) and (A4)). The interior boundary conditions are as 
shown (compare with equations (A5) and (A6)) : 

T,,,(r = r,,O) = T,,,,(r = r,.U) (A20) 

and 

The four constraints can be used to express four of the 
unknown sets of variables (e.g. A’s, C’s, D’s, and E’s) in 
terms of one of the sets of variables (e.g. B’s). The tem- 
perature fields can both be expressed in terms of only the 
B’s An equation similar to equation (A12) can be estab- 
lished where the v’s are generalized to be a function of n as 
shown : 

(A22) 

APPENDIX B : NUMERICAL CALCULATIONS 

The array conduction factors were numerically calculated 
using the four elemental volumes shown in Figs. BI and B7. 
One-dimensional heat transfer is assumed in the 0 and 45 
directions for the square array. and in the 0 and 30 direc- 
tions for the hexagonal array. The isothermal and adiabatic 
boundary conditions are indicated in Figs. B I and B2 of this 
paper. In each elemental volume, three distinct regions are 
illustrated : core. tube and fill. The heat conduction equation 
apphes for each region, i.e. grad (7’) = 0. The interface 
between adjacent regions is assumed to be locally isothermal 
(i.e. thermal contact resistance is not considered). 

The &mental volumes in Figs. Bl and B2 are the mo\t 
fundamental volumes which take advantage ofboth the ther- 
mal and geometrical symmetry. The square array is geomc- 
trically symmetric every 90 rotation, and a 45 rotation 
introduces a distinct direction. The hexagonal array 1s sym- 
metric every 60 rotation, and a 30’ rotation introduces a 
distinct direction. To simulate a solid rod, the core and tube 
conductivities arc set to be equal. To simulate a hollow tube. 
the core and till conductivities arc set to be equal (the term 
hollow tube is consistent with Runge [IO]). 

A commercially available computer program called 
NEKTON [IX] was used. The domains were disc{-etiLcd 
into ‘macro’ elements as shown in Figs. Bl and B2. For 
example, the horizontal volume from the square army was 
discretized into seven macro elements where three were for 
the core. two for the tube and two for the till. One extm 

g” = 1 

T, =O 

(b) 

Fw. Bl. Spectrdl element mesh used to calculate the con- 
duction factor for a square array in the (a) horizontal and 

(b) 45 degree direction. 
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T, = 0 

q” = 1 

03 
FIG. B2. Spectral element mesh used to calculate the con- 
duction factor for a hexagonal array in the (a) horizontal 

and (b) 30 degree direction. 

element was added as an isothermal element (conductivity 
1000 times larger than the fill conductivity) for com- 
putational convenience. In total, eight macro elements were 
used to discretize the domain in Fig. Bl(a). NEKTON is a 
spectral element computer program which allows high-order 
discretization. Both 5 x 5 and 7 x 7 polynomial tensor prod- 
ucts were used in each macro element. The results were 
compared for varying p/d and both were found to yield 
essentially the same solution (to approximately five sig- 

nificant digits in F_,). This comparison of 5 x 5 and 7 x 7 
results confirmed numerical convergence and a 7 x 7 dis- 
cretization was used for all of the results. Tables of results 
are presented by Manteufel [ 161. 

A heat flux was specified on one side of the isothermal 
element which then acted as an isothermal boundary 
condition. The onduction factor was determined by the 
discrete form of “F ourter’s law : 

(Bl) 

where 

n 

k”, 

= heat flux [W m-*1 
= conduction factor [dimensionless] 

k fill = fill conductivity w mm’ “C-‘1 
L = length between isothermal boundaries [m] 

TZ = temperature [“Cl, and 

T, = temperature [“Cl. 

The lengths can be related to the pitch (distance from rod 
center to rod center) : 

f- tP Fig. Bl (a) 

i 

J2 
IP Fig. Bl(b) 

L= 
fP Fig. B2(a) 

I Fig. B2(b). 

The fill conductivity, total heat flux and right side tem- 
perature are specified as k,,, = 1.0 W m-l “C-i, q” = 
1.0 W me*, and T, = O.O”C. The maximum temperature, 
T,, is then calculated using NEKTON. The additional high 
conductivity element was used for computational con- 
venience because the heat flux is not necessarily uniform 
while the temperature T, is uniform along the left side edge 
of the mesh. By introducing the high conductivity element, 
the uniform temperature was ensured while the applied 
heat flux automatically adjusted in the solution. The con- 
duction factor is then calculated using : 

F 
L 

co”d = - 
0 T* 

where T2 is calculated by the computer program. 

W4 


